
Contents

part i prescriptive analytics
1 Prescriptive Analytics 3

1.1 Prescriptive Analytics vs. Descriptive and Predictive Analytics 3
1.2 Problem Scoping and Definition 5
1.3 Data Collection 8
1.4 Optimization Process 8
1.5 Implementation and Monitoring 13
1.6 Summary 13
1.7 End-of-Chapter Exercises 14

2 Optimization Modeling 17
2.1 Basic Model Setup 17
2.2 Identifying the Optimal Solution through Visualization 22
2.3 Systematic Approach to Modeling 26
2.4 Production Planning Model Example 28
2.5 Scheduled Maintenance Model 36
2.6 Summary 43
2.7 End-of-Chapter Exercises 44

3 Data Collection and Processing 47
3.1 Data Gathering 48
3.2 Data Cleaning 54
3.3 Data Transformation 58
3.4 Data Formatting 64

3 Data Collection and Processing

Data collection is a critical step in the prescriptive analytics process. It involves
gathering, cleaning, and organizing data to create a dataset that can be used for
analysis and modeling. In this chapter, we will discuss the importance of data
collection in prescriptive analytics, the challenges associated with data collection,
and best practices for collecting and processing data for prescriptive analytics
projects.

Recall again that in the previous chapter, we use a data-driven approach to
build a model that solves a specific problem. The model that we build is based on
a dataset that we collect and process so that it is ready to load into the model. The
dataset was formatted into a tabular format that consists of rows and columns
that represent products and their attributes, respectively. See Table 3.1 for an
example.

A B C D
1 product revenue cost production_capacity
2 1 50 30 200
3 2 70 40 150
4 3 90 50 100
data params

Table 3.1: The Simple Pro-
duction Planning Problem
Dataset (Exercise 2.4),
available at https://docs
.google.com/spreadsheet
s/d/e/2PACX-1vQzIHhg3mZ
q4eGXraXQZl07kduWMhwrnU
qqs_gPT6qH_V1SWI3crMZMl
lxG6MX1sz3QJCFBjMt9tftr
/pub?output=xlsx).

Note, however, that the values in the dataset can be a summary of the actual
raw data. Revenue and cost, for example, can be calculated from the actual sales
data aggregated over a period of time at particular store locations. Production
capacity can be estimated based on the historical production data, which might
vary overtime due to various factors such as machine breakdowns, maintenance

https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx
https://docs.google.com/spreadsheets/d/e/2PACX-1vQzIHhg3mZq4eGXraXQZl07kduWMhwrnUqqs_gPT6qH_V1SWI3crMZMllxG6MX1sz3QJCFBjMt9tftr/pub?output=xlsx

48 chapter 3. data collection and processing

schedules, and other operational issues. In this chapter, wewill discuss the process
of collecting and processing data to create a dataset that can be used for analysis
and modeling. It includes gathering data from various sources, cleaning the data
to ensure accuracy and reliability, transforming the data into a suitable format,
and formatting the data for analysis and modeling.

3.1 Data Gathering
The first step in the data collection process is gathering data from various sources.
Data can be collected from internal sources, such as databases, spreadsheets, and
other data repositories, as well as external sources, such as APIs, web scraping,
and third-party data providers. The data collected should be relevant to the
problem being addressed and should be of high quality to ensure accurate and
reliable results.

3.1.1 Databases
Databases are a common source of data for prescriptive analytics projects. Databases
can contain a wide range of information, including customer data, product data,
sales data, and other relevant information. Databases can be relational databases,
such as MySQL, PostgreSQL, and Oracle, or NoSQL databases, such as MongoDB,
Cassandra, and Redis. Databases can be accessed using SQL queries or APIs,
depending on the type of database being used.

A common challenge when working with databases is extracting and process-
ing data from multiple tables or databases. This can be a time-consuming process,
especially if the data is spread across multiple databases or tables. To address this
challenge, it is important to have a clear understanding of the data schema and
relationships between tables, as well as the ability to write complex SQL queries
to extract and process the data.

Exercise 3.1. Download the Sales Analytics SQL dataset and import it into an
online SQL editor like SQLiteOnline.com. Write a SQL query that outputs the
product_id, unit_price, cost, and production_capacity for the top 3 products with
the highest unit price.

https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://sqliteonline.com/

3.1 . data gathering 49

Solution: The SQL query in figure 3.1 retrieves the product_id, unit_price, cost
from the products table and the production_capacity from the productions table.
The query joins the products and productions tables on the product_id column
and selects the relevant columns. The results are ordered by the unit_price in
descending order and limited to the top 3 products. Downloading this query
result to a CSV or Excel file can be done using the SQL editor’s export feature.
Figure 3.2 shows the query result.

1 SELECT
2 p.product_id AS id,
3 p.unit_price AS price,
4 p.cost,
5 pr.production_capacity AS cap
6 FROM
7 products p
8 JOIN
9 productions pr ON id = pr.id

10 ORDER BY
11 price DESC
12 LIMIT 3;

Figure 3.1: SQL query to re-
trieve the top 3 products
with the highest unit price.

id price cost cap
779 1498 16.28 552
818 1494 43.68 783
855 1491 55.48 500

Figure 3.2: Query result for
the top 3 products with the
highest unit price.

Note a few basic operations we perform with SQL queries in the solution to
exercise 3.11:

1 The Sales Analytics SQL dataset
can be downloaded from https :
//drive.google.com/file/d/1Af
otiR977uDVjjUbNsK_qRYnQNQVVM5
d/view?usp=sharing.

• Data Selection: The query selects key fields, including product details, unit
price, cost, and production capacity.

• Joins and Relationships: The JOIN clause links the products and productions
tables on the product_id column to combine data from both tables.

• Sorting: The ORDER BY clause sorts the results by unit price in descending
order. Sorting in ascending order can be done by changing DESC to ASC (which
is the default).

• Limiting Results: The LIMIT clause restricts the output to the top 3 products
with the highest unit price.

• Aliases: The AS keyword is used to create aliases for columns, making the
output more readable.

https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing

50 chapter 3. data collection and processing

Exercise 3.2. Let’s do a more complex query to analyze sales performance
using the Sales Analytics SQL dataset. Write a SQL query that retrieves and
calculates the following information from the dataset:

• product_id, product_name, unit_price, cost from the products table

• production_capacity from the productions table

• customer_id and customer_name from the sales table

• Calculate the profit_per_unit as the difference between the unit_price and cost
from the products table

• Calculate the total_quantity_sold as the sum of the quantity_sold from the sales
table

• Calculate the total_revenue as the sum of the quantity_sold multiplied by the
unit_price from the sales table

• Calculate the total_profit as the sum of the quantity_sold multiplied by the
difference between the unit_price and cost from the sales table

• Group the data by product_id, customer_id, product_name, unit_price, cost, pro-
duction_capacity, and customer_name

• Order the results by total_revenue in descending order

Note that you might need to use JOIN and LEFT JOIN clauses to combine data
from multiple tables.

Solution: The SQL query in figure 3.3 retrieves and calculates the specified infor-
mation from the products, productions, sales, and customers tables. It illustrates
how data frommultiple related tables can be combined to produce meaningful
insights. The query uses SQL functions like SUM and MAX to calculate total
units sold, total revenue, total profit, and the date of the last purchase. The JOIN
and LEFT JOIN clauses link sales to product details, production capacity, and
customer information, ensuring comprehensive data collection. The GROUP BY
clause groups data by product and customer, while the ORDER BY clause sorts
results by total revenue, making it easier to identify top-performing products.

https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing

3.1 . data gathering 51

1 SELECT
2 p.product_id,
3 p.product_name,
4 p.unit_price,
5 p.cost,
6 (p.unit_price - p.cost) AS profit_per_unit,
7 pr.production_capacity,
8 c.customer_id,
9 c.customer_name,

10 SUM(s.quantity_sold) AS total_quantity_sold,
11 SUM(s.quantity_sold * p.unit_price) AS total_revenue,
12 SUM(s.quantity_sold * (p.unit_price - p.cost)) AS total_profit,
13 MAX(s.sale_date) AS last_purchase_date
14 FROM
15 sales s
16 JOIN
17 products p ON s.product_id = p.product_id
18 LEFT JOIN
19 productions pr ON p.product_id = pr.product_id
20 LEFT JOIN
21 customers c ON s.customer_id = c.customer_id
22 GROUP BY
23 p.product_id, c.customer_id, p.product_name, p.unit_price, p.cost, pr.

production_capacity, c.customer_name
24 ORDER BY
25 total_revenue DESC;

Figure 3.3: SQL query to
analyze sales performance
based on the Sales Analyt-
ics dataset.

As shown in the exercises, SQL queries can be used to extract and process data
from multiple tables to create a dataset for analysis and modeling. SQL queries
can be used to combine data from different sources, calculate aggregated metrics,
and generate insights that can help organizations make informed decisions. SQL
queries are essential for data collection and processing in prescriptive analyt-
ics projects, enabling organizations to extract valuable information from their
databases and use it to drive business decisions.

3.1.2 Spreadsheets
Spreadsheets are another common source of data for prescriptive analytics projects.
Spreadsheets can contain a wide range of information, including financial data,
sales data, customer data, and other relevant information. Spreadsheets are easy
to use and can be accessed using tools such as Microsoft Excel or Google Sheets
Spreadsheets can be exported to CSV files or other formats for further analysis
and modeling.

52 chapter 3. data collection and processing

A common challenge when working with spreadsheets is handling large
datasets that contain multiple sheets or tabs. This can be a time-consuming pro-
cess, especially if the data is spread across multiple sheets or tabs. To address
this challenge, it is important to have a clear understanding of the data structure
and relationships between sheets, as well as the ability to merge and process data
from multiple sheets.

3.1.3 Public Datasets
Public datasets are another valuable source of data for prescriptive analytics
projects. Public datasets are freely available datasets that can be used for analysis
and modeling. Public datasets can include a wide range of information, such as
government data, research data, and other relevant information. Public datasets
are available in a variety of formats, including CSV, JSON, and Parquet, and can
be easily loaded into Python using libraries such as Pandas and NumPy.

A common way to access public datasets is through online repositories such as
Kaggle2, UCI Machine Learning Repository3, or HuggingFace Datasets4. These 2 https://www.kaggle.com/

3 https://archive.ics.uci.edu
/
4 https://huggingface.co/docs
/datasets/en/index

repositories contain a wide range of datasets that can be used for analysis and
modeling.

From these repositories, you can download datasets in various formats, such
as CSV or JSON, which can be processed using various libraries. In Python,
you can use libraries such as Pandas, NumPy, and Scikit-learn to load, process,
and analyze public datasets. Public datasets are a valuable source of data for
prescriptive analytics projects, providing access to a wide range of information
that can be used to prototype and develop models. Table 3.2 shows and example
of how datasets can be represented in a Pandas DataFrame style in Python.

TransID ProductID Qty Date Total
0 T001 P001 2 2024-03-01 $299.98
1 T002 P003 5 2024-03-02 $149.95
2 T003 P002 3 2024-03-02 $104.97
3 T004 P001 1 2024-03-03 $149.99
4 T005 P004 2 2024-03-03 $159.98
DataFrame[... rows × ... columns]

Table 3.2: The same data in
Pandas DataFrame style

https://www.kaggle.com/
https://archive.ics.uci.edu/
https://huggingface.co/docs/datasets/en/index
https://www.kaggle.com/
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://huggingface.co/docs/datasets/en/index
https://huggingface.co/docs/datasets/en/index

3.1 . data gathering 53

3.1.4 Web Scraping
Web scraping is a technique used to extract data from websites. Web scraping
can be used to collect a wide range of information, including product prices,
customer reviews, news articles, and other relevant data. Web scraping can be
done using tools such as BeautifulSoup, Scrapy, and Selenium, which allow you to
extract data from websites by parsing HTML and XML documents. More recently,
LLM (Large Language Models) have been used to scrape data from websites. An
example to extract data from a website is shown in figure 3.4.

1 import requests
2 from bs4 import BeautifulSoup
3 import json
4
5 url = 'https://www.its.ac.id/simt/en/publication/'
6 response = requests.get(url)
7 soup = BeautifulSoup(response.content, 'html.parser')

Figure 3.4: Python code to
scrape web content using
BeautifulSoup.

The Python code in figure 3.4 demonstrates a practical example of web scraping
using the requests library to fetch web content and BeautifulSoup to parse HTML
data. Once the web content is fetched and parsed, you can extract specific informa-
tion from the HTML document, such as publication data, using BeautifulSoup’s
methods. The extracted data can then be processed and stored in a structured
format, such as JSON, for further analysis and modeling. Figure figure 3.5 shows
an example of parsing the data from the soup object from figure 3.4.

Here’s a breakdown of what happens in both of these code chunks. The first
code chunk fetches the web content from aURL and parses it using BeautifulSoup.
The second code chunk iterates through all tables with the class ’tg’ on the page,
extracts structured publication data from each table, and organizes the data into a
nested list structure. The extracted data is then converted to JSON format for easy
storage or further processing. This example demonstrates how web scraping can
be used to automatically collect structured data from websites, such as academic
publications, for analysis and modeling. However, it is important to note that web
scraping should be done ethically and in compliance with the website’s terms of
service.

54 chapter 3. data collection and processing

1 all_table_data = [] # List to store data from all tables
2
3 for table in soup.find_all('table', {'class': 'tg'}): # Iterate through all

tables with class 'tg'
4 table_data = [] # List to store data for the current table
5 for row in table.find_all('tr')[1:]:
6 cells = row.find_all('td')
7 if len(cells) == 4: # Ensure row has 4 cells (No, Penulis, Tahun, Judul

)
8 entry = {
9 'No': cells[0].text,

10 'Penulis': cells[1].text,
11 'Tahun': cells[2].text,
12 'Judul': cells[3].text
13 }
14 table_data.append(entry)
15 all_table_data.append(table_data) # Append the current table's data to the

main list
16
17 # Convert the data to JSON format
18 json_data = json.dumps(all_table_data, indent=4)
19 print(json_data) # Print the JSON data for all tables

Figure 3.5: Python code to
parse structured data from
web content using Beautiful-
Soup.

3.2 Data Cleaning
Data cleaning is an important step in the data collection process. It involves
identifying and correcting errors, missing values, and inconsistencies in the data
to ensure that the data is accurate and reliable. Data cleaning can involve a wide
range of tasks, including removing duplicates, filling missing values, correcting
errors, and standardizing data formats. Data cleaning is essential for ensuring
that the data is suitable for analysis and modeling.

Suppose that we have a dataset that contains information about customer_id,
product_id, quantity_sold, and sale_date and we want to clean the data to ensure that
it is accurate and reliable. The data is stored in a CSV file that can be downloaded
from the Sales Dataset5. Once downloaded, the data can be loaded into a Pandas 5 Available at https://drive.goo

gle.com/file/d/1WN21Dgy3oWSx
ITTMzW69hjUesuInvyvd/view?usp
=sharing.

DataFrame as shown in figure 3.6.

1 import pandas as pd
2
3 df = pd.read_csv('sales_data.csv')

Figure 3.6: Python code to
load data from a CSV file
into a Pandas DataFrame.

https://drive.google.com/file/d/1WN21Dgy3oWSxITTMzW69hjUesuInvyvd/view?usp=sharing
https://drive.google.com/file/d/1WN21Dgy3oWSxITTMzW69hjUesuInvyvd/view?usp=sharing
https://drive.google.com/file/d/1WN21Dgy3oWSxITTMzW69hjUesuInvyvd/view?usp=sharing
https://drive.google.com/file/d/1WN21Dgy3oWSxITTMzW69hjUesuInvyvd/view?usp=sharing
https://drive.google.com/file/d/1WN21Dgy3oWSxITTMzW69hjUesuInvyvd/view?usp=sharing

3.2. data cleaning 55

3.2.1 Handling Missing Values
Missing values are a common issue in datasets and can occur for a variety of
reasons, such as data entry errors, data corruption, or incomplete data. Missing
values can affect the accuracy and reliability of the analysis and modeling results,
so it is important to handle missing values appropriately. There are several strate-
gies for handling missing values, including removing rows with missing values,
imputing missing values, and using predictive models to fill missing values based
on other features. Figure 3.7 shows an example of handling missing values in a
Pandas DataFrame by filling missing customer_id values with some default value,
say, -1, to represent anonymous customers.

1 print("Number of values missing:" , df.isnull().sum())
2
3 default_value = -1
4 df['customer_id'] = df['customer_id'].fillna(default_value).astype(int)
5
6 print("Number of values missing after filling:" , df.isnull().sum())

Figure 3.7: Handling miss-
ing values in Python Pandas
DataFrame.

3.2.2 Removing Duplicates
Duplicates are another common issue in datasets and can occur when the same
data is recorded multiple times. Duplicates can affect the accuracy and reliability
of the analysis and modeling results, so it is important to remove duplicates from
the dataset. Duplicates can be identified by comparing rows in the dataset and
removing rows that are identical or nearly identical. Duplicates can be removed
based on a single column or multiple columns, depending on the criteria used to
identify duplicates. Figure 3.8 shows an example of removing duplicates from a
Pandas DataFrame, say, from the sale_id column. The optional parameter keep

1 print("\n=== Removing Duplicates ===")
2 print("Duplicated sale_ids before:", df['sale_id'].duplicated().sum())
3
4 # Keep first occurrence of each sale_id
5 df = df.drop_duplicates(subset=['sale_id'], keep='first')
6
7 print("Duplicated sale_ids after:", df['sale_id'].duplicated().sum())

Figure 3.8: Python code to
remove duplicates from a
Pandas DataFrame based
on the sale_id column.

56 chapter 3. data collection and processing

specifies which duplicates to keep. The default value is ’first’, which keeps the
first occurrence of the duplicate and removes the subsequent occurrences. Other
possible values are ’last’ and False, which keep the last occurrence of the duplicate
and remove all duplicates, respectively.

3.2.3 Standardizing Data Formats
Data formats can vary widely in datasets, which can make it difficult to analyze
and model the data. Standardizing data formats involves converting data into a
consistent format to ensure that the data is suitable for analysis and modeling.
Data formats can include date formats, currency formats, and other formats
that need to be standardized to ensure that the data is accurate and reliable.
Standardizing data formats can involve converting data types, parsing strings,
and formatting data according to a specific format. Figure 3.9 shows an example
of standardizing the column sale_date to a consistent datetime format in a Pandas
DataFrame, while handling multiple input date formats and removing invalid
future dates.

1 from datetime import datetime
2
3 print("\n=== Standardizing Dates ===")
4
5 def convert_date(date_str):
6 try:
7 # Try different date formats
8 for fmt in ('%Y-%m-%d', '%m/%d/%Y', '%d-%b-%Y'):
9 try:

10 return pd.to_datetime(date_str, format=fmt)
11 except:
12 continue
13 return pd.NaT
14 except:
15 return pd.NaT
16
17 df['sale_date'] = df['sale_date'].apply(convert_date)
18
19 # Remove future dates
20 current_date = pd.Timestamp('2024-01-01')
21 df = df[df['sale_date'] <= current_date]

Figure 3.9: Python code to
standardize the sale_date
column to a specific date for-
mat in a Pandas DataFrame.

3.2. data cleaning 57

The code defines a convert_date() function that attempts to parse dates in
multiple common formats (’\%Y-\%m-\%d’, ’\%m/\%d/\%Y’, and ’\%d-\%b-\%Y’). For
each date string, it tries each format until one succeeds, returning a pandas
Timestamp object. If no format matches or there’s an error, it returns pd.NaT (Not
a Time) to handle invalid dates gracefully. After converting all dates, the code
removes any records with future dates (after January 1, 2024) to ensure data
validity. This robust approach handles the common challenges of inconsistent
date formats and invalid dates in real-world datasets.

3.2.4 Correcting Errors
Errors in datasets can occur for a variety of reasons, such as data entry errors, data
corruption, or incomplete data. Errors can affect the accuracy and reliability of the
analysis and modeling results, so it is important to correct errors in the dataset.
Common errors include negative values in quantity fields, missing values, and
outliers that deviate significantly from the normal range. Figure 3.10 shows an
example of cleaning quantity data by removing negative values and handling
outliers using the Interquartile Range (IQR) method.

1 print("\n=== Cleaning Quantities ===")
2 print("Negative quantities:", (df['quantity_sold'] < 0).sum())
3
4 # Remove negative quantities
5 df = df[df['quantity_sold'] >= 0]
6
7 # Handle outliers using IQR method
8 Q1 = df['quantity_sold'].quantile(0.25)
9 Q3 = df['quantity_sold'].quantile(0.75)

10 IQR = Q3 - Q1
11 outlier_mask = (df['quantity_sold'] > Q3 + 1.5 * IQR)
12 print("Outliers detected:", outlier_mask.sum())
13
14 # Cap outliers at 99th percentile
15 cap_value = df['quantity_sold'].quantile(0.99)
16 df.loc[outlier_mask, 'quantity_sold'] = cap_value

Figure 3.10: Python code to
clean quantity data by re-
moving negative values and
handling outliers.

The code first identifies and removes any negative quantities, which are likely
data entry errors since quantities sold should always be non-negative. Then, it
handles outliers using the IQR method, which is a robust statistical technique
for detecting extreme values. The IQR is calculated as the difference between the

58 chapter 3. data collection and processing

75th percentile (Q3) and 25th percentile (Q1). Values that are more than 1.5 times
the IQR above Q3 are considered outliers. Rather than removing these outliers
completely, the code caps them at the 99th percentile to preserve the data while
mitigating their impact on analysis. This approach maintains data integrity while
ensuring that extreme values don’t unduly influence statistical calculations and
modeling results.

3.3 Data Transformation
Data transformation is an important step in the data collection process. It involves
converting raw data into a format that is suitable for analysis and modeling. Data
transformation can involve a wide range of tasks, including aggregating data,
normalizing data, and encoding categorical variables. Data transformation is
essential for ensuring that the data is accurate and reliable and can be used for
analysis and modeling.

3.3.1 Aggregating Data
We have seen an example of data aggregation in the previous exercise where we
calculated the total revenue, total profit, and total quantity sold for each product
and customer. Data aggregation involves combining data from multiple rows
into a single row to create summary statistics or metrics. Data aggregation can be
done using functions such as SUM, COUNT, MAX, and MIN to calculate aggregated
metrics based on specific criteria. Data aggregation is useful for summarizing
data and creating meaningful insights that can be used for analysis and modeling.
Figure 3.11 shows an example of aggregating the quantity_sold as a sum for each
product_id in a Pandas DataFrame.

1 df_agg = df.groupby('product_id')['quantity_sold'].sum().reset_index() Figure 3.11: Python code to
aggregate the quantity_sold
as a sum for each product_id
in a Pandas DataFrame.

The groupby() function groups the data by the product_id column, and the sum()
function calculates the sum of the quantity_sold column for each group. The re-
set_index() function resets the index of the resulting DataFrame to create a new
DataFrame with the aggregated data. Figure 3.12 shows more advanced examples
of data aggregation, including daily sales summaries with metrics like total sales

3.3. data transformation 59

and unique customers per day, product performance tracking quantities sold, and
customer purchase patterns analyzing buying behavior. The code uses the agg()
function to calculate multiple aggregations like sum, mean, count, and number
of unique values for different columns simultaneously.

1 print("=== Aggregating Data ===")
2
3 # Daily sales summary
4 daily_sales = df.groupby('sale_date').agg({
5 'sale_id': 'count',
6 'quantity_sold': ['sum', 'mean', 'std'],
7 'customer_id': 'nunique'
8 }).round(2)
9

10 # Product performance
11 product_performance = df.groupby('product_id').agg({
12 'quantity_sold': ['sum', 'mean'],
13 'sale_id': 'count'
14 }).round(2)
15
16 # Customer purchase patterns
17 customer_patterns = df[df['customer_id'] != -1].groupby('customer_id').agg({
18 'sale_id': 'count',
19 'quantity_sold': ['sum', 'mean'],
20 'product_id': 'nunique'
21 }).round(2)

Figure 3.12: Python code to
aggregate data in multiple
ways: daily sales summaries
showing total sales and
unique customers per day,
product performance met-
rics tracking quantities sold,
and customer purchase pat-
terns analyzing buying be-
havior.

3.3.2 Normalizing Data
Another example of data transformation is normalizing data. Normalizing data
involves scaling the features in the dataset to ensure that the data is standardized
and comparable. There are several common normalization techniques:

• Min-MaxScaling: Scales features to a fixed range, typically 0 to 1, by subtracting
the minimum value and dividing by the range

• Z-score Standardization: Transforms data to have a mean of 0 and standard
deviation of 1 by subtracting the mean and dividing by the standard deviation

60 chapter 3. data collection and processing

Normalizing data is important for ensuring that features with different scales
and units can be compared fairly. This is especially crucial for machine learning
algorithms that are sensitive to the scale of input features. Figure 3.13 shows an
example of applying both min-max scaling and z-score standardization to the
quantity_sold column.

1 # Import scaler from sklearn
2 from sklearn.preprocessing import MinMaxScaler
3
4 # Normalize quantity_sold using Min-Max scaling
5 scaler = MinMaxScaler()
6 df['quantity_sold_normalized'] = scaler.fit_transform(df[['quantity_sold']])
7
8 # Create z-scores for quantity_sold
9 df['quantity_sold_zscore'] = (df['quantity_sold'] - df['quantity_sold'].mean())

/ df['quantity_sold'].std()

Figure 3.13: Python code
demonstrating two nor-
malization techniques:
Min-Max scaling using
sklearn and z-score stan-
dardization using statistical
formulas.

The code uses scikit-learn’s MinMaxScaler to perform min-max scaling, which
transforms the data to the [0,1] range. For z-score standardization, it applies
the standard formula directly using Pandas operations. After normalization,
the features become more suitable for analysis and modeling, as they are on
comparable scales regardless of their original units.

3.3.3 Encoding Categorical Variables
Another example of data transformation is encoding categorical variables. Cate-
gorical variables are variables that represent categories or groups. Oftentimes,
categorical variables need to be encoded into numerical values to be used in anal-
ysis and modeling, as most machine learning algorithms require numerical input.
In this example, we’ll demonstrate how to encode temporal features like days of
the week and months using one-hot encoding. Figure 3.14 shows an example of
encoding these categorical variables using Pandas.

The code first extracts temporal components (year, month, day, day of week)
from the sale dates. Then, it uses Pandas’ get_dummies() function to perform one-
hot encoding on the day of week and month values. One-hot encoding creates
binary columns for each unique category - for example, each day of the week (0-6)
gets its own column where 1 indicates that day and 0 indicates other days. The
encoded features are concatenated with the original DataFrame, and the original

3.3. data transformation 61

1 print("\n=== Engineering Features ===")
2
3 # Extract date components
4 df['sale_year'] = df['sale_date'].dt.year
5 df['sale_month'] = df['sale_date'].dt.month
6 df['sale_day'] = df['sale_date'].dt.day
7 df['sale_dayofweek'] = df['sale_date'].dt.dayofweek
8
9 print("\n=== Encoding Categorical Variables ===")

10
11 # 1. One-hot encode day of week (0-6)
12 day_encoded = pd.get_dummies(df['sale_dayofweek'], prefix='day', dtype=int)
13
14 # 2. One-hot encode month
15 month_encoded = pd.get_dummies(df['sale_month'], prefix='month', dtype=int)
16
17 # Combine all encoded features
18 df = pd.concat([
19 df,
20 day_encoded,
21 month_encoded
22], axis=1)
23
24 # Remove original categorical columns if desired
25 columns_to_drop = ['sale_dayofweek', 'sale_month']
26 df = df.drop(columns=columns_to_drop)
27
28 print("Added encoded columns:")
29 print("- Days of week:", list(day_encoded.columns))
30 print("- Months:", list(month_encoded.columns))
31
32 def show_encoding_example(df):
33 print("\n=== Example of Encoded Data ===")
34 encoded_columns = (
35 list(df.filter(like='day_').columns) +
36 list(df.filter(like='month_').columns)
37)
38 print("\nSample of encoded data (first 5 rows):")
39 print(df[encoded_columns].head())
40
41 # Call the function to print the example
42 show_encoding_example(df)

Figure 3.14: Python code
demonstrating feature engi-
neering and one-hot encod-
ing of temporal categorical
variables (days of week and
months) using Pandas.

62 chapter 3. data collection and processing

categorical columns are dropped. The code includes helper functions to display
the newly created encoded columns and show example rows of the transformed
data. This type of encoding is particularly useful for machine learning models
that need numerical inputs and can benefit from capturing cyclical patterns in
temporal data.

Table 3.3 shows an example of the one-hot encoded data, where each row
represents a sale transaction and the columns show the encoded values for days
andmonths. The first section shows the days of theweek encoded as binary values
(0 or 1), with columns for Sunday through Saturday. The second section shows
the months encoded similarly, with columns for January through December. A
value of 1 indicates that the sale occurred on that specific day or month, while 0
indicates it did not. For example, looking at index 0, we can see this sale occurred
on a Saturday (1 in the Sat column) in November (1 in the Nov column). Similarly,
the sale at index 1 occurred on a Monday in July, as indicated by the 1s in those
respective columns. This binary representation transforms categorical temporal
data into a numerical format that machine learning models can process effectively.

3.3.4 Dimensionality Reduction
Another more complex example of data transformation is dimensionality re-
duction. Dimensionality reduction is a technique used to reduce the number of
features in a dataset while preserving themost important information. Dimension-
ality reduction can be done using techniques such as principal component analysis
(PCA), t-distributed stochastic neighbor embedding (t-SNE), and autoencoders.
Dimensionality reduction is useful for reducing the computational complexity
of the analysis and modeling process and can help improve the accuracy and
reliability of the results.

The code demonstrates the application of PCA using scikit-learn’s implemen-
tation. First, we select numerical features that have been previously normalized
or standardized, as PCA is sensitive to the scale of input features. The PCA class
is initialized with n_components=3, meaning we want to reduce our data to three
principal components. The fit_transform() method both fits the PCA model to our
data and transforms it into the new lower-dimensional space. The transformed
components are then added back to theDataFrame as new columns. The explained
variance ratio shows how much of the original data’s variance is preserved in

3.3. data transformation 63

Days of Week
Sun Mon Tue Wed Thu Fri Sat

0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0
2 0 0 0 0 0 1 0
3 1 0 0 0 0 0 0
4 0 1 0 0 0 0 0

Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 1 0
3 0 0 1 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0 0 0
DataFrame[5 rows × 19 columns]

Table 3.3: Example of one-
hot encoded temporal data

1 from sklearn.decomposition import PCA
2
3 print("\n=== Dimensionality Reduction ===")
4
5 # Select numerical features for PCA
6 numerical_features = ['quantity_sold_normalized', 'quantity_sold_zscore',
7 'sale_year', 'sale_day']
8
9 # Apply PCA

10 pca = PCA(n_components=3)
11 pca_result = pca.fit_transform(df[numerical_features])
12
13 # Add PCA components to dataframe
14 df['pca_1'] = pca_result[:, 0]
15 df['pca_2'] = pca_result[:, 1]
16 df['pca_3'] = pca_result[:, 2]
17
18 print("Explained variance ratio:", pca.explained_variance_ratio_)

Figure 3.15: Python code
demonstrating dimension-
ality reduction using Prin-
cipal Component Analysis
(PCA) on numerical fea-
tures.

64 chapter 3. data collection and processing

each principal component, helping us understand the information retention in
the dimensionality reduction process.

3.4 Data Formatting
Data formatting is an important step in the data collection process. It involves for-
matting the data into a specific structure that is suitable for analysis andmodeling.
We have seen a useful data format in the previous chapter, which is the tabular
format. This format is widely used in data analysis and modeling and consists of
rows and columns that represent observations and features, respectively.

We have also seen a dictionary format, which is used to represent data in a
key-value pair format. The dictionary format is useful for storing data that is
structured as key-value pairs, such as customer information, product information,
and other relevant data, where each key corresponds to a specific value.

Another common data format is the time series format, which is used to rep-
resent data that changes over time. Time series data consists of a sequence of
data points that are indexed by time. Time series data can be used to analyze and
model trends, patterns, and anomalies in the data. An example of time series data
is sales transactions, where each data point represents the quantity sold logged
at a specific time.

3.5 Data-driven Modeling
A model that is built based on data is called a data-driven model. We have seen
a modular approach to building data-driven models in the previous chapter,
in which the parameters of the model are loaded from the data. This approach
allows us to build models that are flexible and adaptable to different datasets.

In your project, you will be building a data-driven model to solve a specific
problem. The model that you build will be based on the data that you collect and
process, andwill be used both for verification and validation, as well as for solving
the problem at hand. During verification, you will use a small-scale dataset to
verify that the model is working as expected. After the model is verified, you will
use a larger dataset and run the model on it to obtain the optimal solution.

3.6. summary 65

3.6 Summary
In this chapter, we discussed the process of collecting and processing data to create
a dataset that can be used for analysis andmodeling.We covered the steps involved
in data collection, including gathering data from various sources, cleaning the
data to ensure accuracy and reliability, transforming the data into a suitable
format, and formatting the data for analysis and modeling. We also discussed the
importance of data cleaning, data transformation, and data formatting in the data
collection process, and provided examples of how these steps can be implemented
using Python and Pandas. We also discussed the concept of data-driven modeling
and how it can be used to build models that are based on data. In the next chapter,
we will discuss the process of verifying and validating the data-driven model to
ensure that it is accurate and reliable for solving the problem at hand.

3.7 End of Chapter Exercises

Exercise 3.3. Use the Sales Analytics SQL dataset. Identify the top 5 products
by total quantity sold. Write a SQL query to retrieve the product_name and the
total quantity sold for each product, and order the results by the total quantity
sold in descending order.

Exercise 3.4. Use the Sales Analytics SQL dataset. Calculate the total sales for
each month of the current year. Write a SQL query to retrieve the month, the
number of sales, and the total items sold for each month, and order the results
by the month.

Exercise 3.5. Use the Sales Analytics SQL dataset. Identify customerswho have
made more than 3 purchases. Write a SQL query to retrieve the customer_name
and the number of purchases for each customer, and order the results by the
number of purchases in descending order.

Exercise 3.6. Use the Sales Analytics SQLdataset. List themost recent purchase
for each customer. Write a SQL query to retrieve the customer_name, the last
purchase date, and the last product bought for each customer.

https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing

66 chapter 3. data collection and processing

Exercise 3.7. Use the Sales Analytics SQL dataset. Compare current sales
with production capacity. Write a SQL query to retrieve the product_name, the
monthly production capacity, and the monthly sales for each product, and
order the results by the product name.

Exercise 3.8. Use the Sales Analytics SQL dataset. Calculate simple profit
margins for each product. Write a SQL query to retrieve the product_name, the
unit_price, the cost, the profit per unit, and the profit margin percentage for each
product, and order the results by the profit margin percentage in descending
order.

Exercise 3.9. Try the following variations on your own:

1. Modify the top selling products query to show sales for a specific month.

2. Find all products that haven’t had any sales in the last month.

3. List customers who have bought a specific product.

4. Calculate the average order size for each product.

End-of-Chapter Exercises Solutions

1 SELECT
2 p.product_name,
3 SUM(s.quantity_sold) as total_quantity
4 FROM products p
5 JOIN sales s ON p.product_id = s.product_id
6 GROUP BY p.product_name
7 ORDER BY total_quantity DESC
8 LIMIT 5;

Figure 3.16: SQL query to
find the top 5 products by
total quantity sold.

https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing
https://drive.google.com/file/d/1AfotiR977uDVjjUbNsK_qRYnQNQVVM5d/view?usp=sharing

3.7. end of chapter exercises 67

1 SELECT
2 strftime('%Y-%m', sale_date) as month,
3 COUNT(*) as number_of_sales,
4 SUM(quantity_sold) as total_items_sold
5 FROM sales
6 WHERE sale_date >= date('now', 'start of year')
7 GROUP BY month
8 ORDER BY month;

Figure 3.17: SQL query to
calculate total sales for each
month of the current year.

1 SELECT
2 c.customer_name,
3 COUNT(s.sale_id) as purchase_count
4 FROM customers c
5 JOIN sales s ON c.customer_id = s.customer_id
6 GROUP BY c.customer_name
7 HAVING purchase_count > 3
8 ORDER BY purchase_count DESC;

Figure 3.18: SQL query to
identify customers who
have made more than 3
purchases.

1 SELECT
2 c.customer_name,
3 MAX(s.sale_date) as last_purchase_date,
4 p.product_name as last_product_bought
5 FROM customers c
6 JOIN sales s ON c.customer_id = s.customer_id
7 JOIN products p ON s.product_id = p.product_id
8 GROUP BY c.customer_name;

Figure 3.19: SQL query to
list the most recent pur-
chase for each customer.

1 SELECT
2 p.product_name,
3 pr.production_capacity as monthly_capacity,
4 SUM(s.quantity_sold) as monthly_sales
5 FROM products p
6 JOIN productions pr ON p.product_id = pr.product_id
7 JOIN sales s ON p.product_id = s.product_id
8 WHERE s.sale_date >= date('now', 'start of month')
9 GROUP BY p.product_name;

Figure 3.20: SQL query to
compare current sales with
production capacity.

68 chapter 3. data collection and processing

1 SELECT
2 product_name,
3 unit_price,
4 cost,
5 (unit_price - cost) as profit_per_unit,
6 ROUND((unit_price - cost) * 100.0 / unit_price, 2)
7 as profit_margin_percentage
8 FROM products
9 ORDER BY profit_margin_percentage DESC;

Figure 3.21: SQL query to
calculate simple profit mar-
gins for each product.

	I Prescriptive Analytics
	Prescriptive Analytics
	Prescriptive Analytics vs. Descriptive and Predictive Analytics
	Problem Scoping and Definition
	Data Collection
	Optimization Process
	Implementation and Monitoring
	Summary
	End-of-Chapter Exercises

	Optimization Modeling
	Basic Model Setup
	Identifying the Optimal Solution through Visualization
	Systematic Approach to Modeling
	Production Planning Model Example
	Scheduled Maintenance Model
	Summary
	End-of-Chapter Exercises

	Data Collection and Processing
	Data Gathering
	Data Cleaning
	Data Transformation
	Data Formatting
	Data-driven Modeling
	Summary
	End of Chapter Exercises

	Verification and Validation
	Verification of Model Logic through Sensitivity Parameters
	Next section
	Another section

	Solving Optimization Models
	Evaluation and Benchmarks
	Monitoring and Refinement
	Final Remarks

